Special topics graduate course Inverse modeling and data assimilation for Earth System Sciences

Instructor: Dr. Tomislava Vukicevic (Tomi)

Associate Research Professor Atmospheric and Oceanic Sciences

e-mail: tomislava.vukicevic@colorado.edu

ATOC 7500-001 (call #85299)

Fall 2006

Mondays and Wednesdays from 10:00-11:15am in STAD 136C

SYLLABUS

Goals

- Understanding of purpose of the inverse modeling and data assimilation in the Earth System sciences
- Understanding of mathematical and statistical theoretical basis of inverse modeling and data assimilation methods
- Detail derivation of major classes of numerical techniques from the theory to aid the student in selection and further development in applications
- Understanding of characteristics of modeling and measurements in the Earth System science's inverse problem solving
- Understanding of applicability of techniques in the physical analysis
- Tutorial numerical exercises in Matlab with selection of prototype modeling problems

Schedule of sessions

Week 1 (Aug 28 and 30)

1. Why inverse modeling and data assimilation?

- 1.1. Purpose and nature of modeling in the Earth System sciences
- 1.2. Relevance of inverse modeling and data assimilation in the Earth System research and applications
- 2. Observations of the Earth system: Direct and indirect measurements

Weeks 2-4 (Sept 6, 1	11, 13,	18 and 2	0)
----------------------	---------	----------	----

3.	Basics of inverse problem solving and data assimilation 3.1. Model and parameter space 3.2. Measurement space
	3.3. Probabilistic nature of information
	3.4. General inverse problem and solution
	3.5. Discrete probability density (exercises)
W	eeks 5-10 (Sept 25 and 27, Oct 2, 4, 9, 11, 16, 18, 23, 25 and 30, Nov 1)
4.	Inverse modeling and data assimilation techniques (derivation and exercises)
	4.1. Monte Carlo 4.2. Kalman Filter
	4.2. Kaimai Pitei 4.3. Variational least squares
	4.4. Ensembles
***	1.44.01610)
W	eek 11 (Nov 6 and 8)
5.	Consideration of modeling errors
W	eek 12 (Nov 13, 15)
6.	Parameter estimation: data assimilation for hypothesis testing and improving models
W	eek 13 is Fall Break (Nov 20-24)
***	1.14.01 27 1.20\
W	eek 14 (Nov 27 and 29)
7.	Observability and Predictability
W	Veek 15 (Dec 4 and 6)
8.	Dynamic system sensitivity analysis
W	eek 16 (Dec 11 and 13)
9.	Review and student presentations (class projects)